ZettaBricks: A Language, Compiler, and Runtime Environment for

Anyscale Computing

Saman Amarasinghe, Alan Edelman, Una-May O’Reilly, Martin Rinard, Chris Hill
Massachusetts Institute of Technology

Abstract: With the dawn of the multicore era, pro-
grammers are being challenged to write code that
performs well on an increasingly diverse array of ar-
chitectures. A single program or library may be
used on systems ranging in power from large clus-
ters of servers with hundreds or thousands of cores
to small single-core netbooks or cell phones. A pro-
gram may need to run efficiently both on architec-
tures with many simple cores and on those with fewer
monolithic cores. Some of the systems a program en-
counters might have GPU coprocessors, while others
might not. Looking forward, processor designs such
asymmetric multicore, with different types of cores on
a single chip, will present an even greater challenge
for programmers to utilize effectively.

Programmers often find they must make algorith-
mic changes to their program in order to get perfor-
mance when moving between these different types of
architectures. For example, when moving from a se-
quential to a parallel architecture a programmer may
have to change his algorithm to expose more paral-
lelism. A similar need for algorithmic change arises
when switching between different types of parallel ar-
chitectures. In a recent paper, we showed that even
when changing between similar architectures with the
same number of cores, dramatic algorithmic changes
can be required to optimize performance.

To obtain portable performance in this new world
of more diverse architectures, we must build pro-
grams that can adapt to whatever hardware plat-
form they are currently running on. Our team of
researchers at MIT has developed PetaBricks, a new,
implicitly parallel language and compiler that allows
the user to specify algorithmic choices at the language
level. Using this mechanism, PetaBricks programs
define not a single algorithmic path, but a search
space of possible paths. This flexibility allows our
compiler to build programs that can automatically
adapt, with empirical autotuning, to every architec-
ture they encounter.

Project Objective: We are developing
ZettaBricks: a programming language, a com-
piler and a runtime environment that can drastically
reduce the burden of programming exascale systems
by eliminating the need for architecture-specific
performance tuning and simplifying error handling.
ZettaBricks will provide a Write Once Run Anywhere
programming model where a single program can
work efficiently on a megascale handheld device and
also scale to an exascale supercomputer.

Key Ideas: ZettaBricks introduces algorithmic
choice at the language level, letting the programmer
provide high level descriptions of multiple algorithms
for a given problem, each of which may work best
under different conditions. These choices are further
expanded in the compiler by automatically generat-
ing different iteration orders, computation partitions,
data layouts, and replication strategies. In order to
handle deep memory hierarchies as well as hardware
failures, ZettaBricks introduces Bricks, a hierarchi-
cal data representation and data management system
that seamlessly spans from in-core caches to main
memory to local disks to SANs and other distributed
storage systems. All these choices are exposed to
a machine learning runtime system that will use
application-specific rapid online adaptation to find
the best choice given the current execution environ-
ment. ZettaBricks will also incorporate architecture-
specific long-term learning to evolve the compiler and
runtime system to prune away perpetually under-
performing choices. In long computations on large
failure-prone clusters, ZettaBricks will provide relia-
bility and resiliency by duplicating and re-computing
data as needed. ZettaBricks also introduces data
structure repair to identify and fix rare input, al-
gorithmic and hardware errors that can ruin a long
running computation. ZettaBricks will also support
variable precision computations by selecting the al-
gorithms and levels of precision for intermediate val-
ues that efficiently lead to output with the required



—> Rule IR —_— User Rules —
PetaBricks Output
(pbcc) inary
Synthetic Rules
ot __..Rule Level Representations T =
§ . Transform Level Representations jainine
Configuration Information
File Choice Grids / File

Applicable Regions

Choice
Dependency Graph

Figure 1: Flow for the compilation of a PetaBricks program with a single transform. (Additional transforms
would cause the center part of the diagram to be duplicated.)

precision. The ZettaBricks system will be built on
our current successful PetaBricks effort that demon-
strated some of these concepts on shared memory ar-
chitectures.

Expected Impact: A programming environment
that lets scientists and researchers worry about the
science, not the intricacies of the execution environ-
ment, will have a huge impact on the science com-
munity. Imagine a world where a scientist writes a
program by describing a handful of possible solvers
for a problem in a simple language focusing on the
science with no regard to where and how it is run.
Then she uses a small data set in her own megascale
desktop to test and debug the algorithms to make
sure that the right problem is solved. When satis-
fied, she can start doing science on a terascale cluster
at her institution with a real dataset. Finally when
the science is proven to be good, she can get some
time on an exascale machine at a national lab and
run her program on a global dataset. All this with-
out ever changing the program or any performance
tuning! Today, programmers at Google have a sim-
ilar workflow for a limited class of applications with
map-reduce. We would like to make this the future
for the scientific community with ZettaBricks.

ZettaBricks Compiler Infrastructure: Figure 1
displays the general flow for the compilation of a
PetaBricks transform. Compilation is split into two
representations. The first representation operates at

the rule level, a construct in the language, and is simi-
lar to a traditional high level sequential intermediate
representation. The second representation operates
at the transform level, and is responsible for manag-
ing choices and for parallel code synthesis.

The compilation generates an output binary and
a training information file containing static analysis
information. These two outputs are used by the au-
totuner to search the space of possible algorithmic
paths. Autotuning creates a choice configuration file,
which can either be used by the output binary to
run directly or can be fed back into the compiler to
allow additional optimizations. The autotuner fol-
lows a genetic algorithm approach to search through
the available choice space. It maintains a population
of candidate algorithms which it continually expands
using a fixed set of high level mutators, which are
generated through static code analysis. The auto-
tuner then prunes the population in order to allow it
to evolve more optimal algorithms. The input sizes
used for testing during this process grow exponen-
tially, which naturally exploits any optimal substruc-
ture inherent to most programes.



